CHAPTER TO

The Mole

Section 10.1 Measuring Matter

In your textbook, read about counting particles.

In Column B, rank the quantities from Column A from smallest to largest.

Column A	Column B
0.5 mol	1.
200	2.
5	3
6,000,000,000	4
6.02×10^{23}	5
dozen	6
four moles	7
gross	8
pair	9
ream	10.

In your textbook, read about converting moles to particles and particles to moles.

In the boxes provided, write the conversion factor that correctly completes each problem.

11. 1.20 mol Cu ×
$$= 7.22 \times 10^{23} \text{ Cu atoms}$$
12. $9.25 \times 10^{22} \text{ molecules CH}_4 \times$
$$= 1.54 \times 10^{-1} \text{ mol CH}_4$$
13. $1.54 \times 10^{26} \text{ atoms Xe} \times$
$$= 2.56 \times 10^2 \text{ mol Xe}$$
14. $3.01 \text{ mol } F_2 \times$
$$= 1.81 \times 10^{24} \text{ molecules } F_2$$

Name	Date	Class

Section 10.2 Mass and the Mole

In your textbook, read about the mass of a mole.

For each statement below, write true or false.

1.	The isotope hydrogen-1 is the standard used for the relative scale of atomic masses.
2.	The mass of an atom of helium-4 is 4 amu.
3.	The mass of a mole of hydrogen atoms is 1.00×10^{23} amu.
4.	The mass in grams of one mole of any pure substance is called its molar mass.

- 5. The atomic masses recorded on the periodic table are weighted averages of the masses of all the naturally occurring isotopes of each element.
- __ 6. The molar mass of any element is numerically equal to its atomic mass in grams.
- 7. The molar mass unit is mol/g.
 - __ 8. If the measured mass of an element is numerically equal to its molar mass, then you have indirectly counted 6.02×10^{23} atoms of the element in the measurement.

In your textbook, read about using molar mass.

For each problem listed in Column A, select from Column B the letter of the conversion factor that is needed to solve the problem. You may need to use more than one conversion factor to solve the problem.

Column A		Colu	Column B	
9.	Find the number of moles in 23.0 g of zinc.	a.	65.4 g Zn	
10.	Find the mass of 5.0×10^{20} zinc atoms.		1 mol Zn	
11.	Find the mass of 2.00 moles of zinc.	b.	1 mol Zn 65.4 g Zn	
12.	Find the number of atoms in 7.40 g of zinc.		6.02×10 ²³ atoms Zn	
13.	Find the number of moles that contain 4.25×10^{27} zinc atoms.	c.	1 mol Zn	
14.	Find the number of atoms in 3.25 moles of zinc.	d	$\frac{1 \text{ mol Zn}}{6.02 \times 10^{23} \text{ atoms Zn}}$	
		u.	6.02×10 ²³ atoms Zn	